Two novel aggregation-based algebraic multigrid methods

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic analysis of aggregation-based multigrid

Convergence analysis of two-grids methods based on coarsening by (unsmoothed) aggregation is presented. For diagonally dominant symmetric (M-)matrices, it is shown that the analysis can be conducted locally; that is, the convergence factor can be bounded above by computing separately for each aggregate a parameter which in some sense measures its quality. The procedure is purely algebraic and c...

متن کامل

An aggregation-based algebraic multigrid method

An algebraic multigrid method is presented to solve large systems of linear equations. The coarsening is obtained by aggregation of the unknowns. The aggregation scheme uses two passes of a pairwise matching algorithm applied to the matrix graph, resulting in most cases in a decrease of the number of variables by a factor slightly less than four. The matching algorithm favors the strongest nega...

متن کامل

Generalizing Smoothed Aggregation-based Algebraic Multigrid

Smoothed aggregation-based (SA) algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise from discretized partial differential equations. While SA has been effective over a broad class of problems, it has several limitations and weaknesses that this thesis is intended to address. This includes the development of a more robust strength-of-connection ...

متن کامل

Algebraic Multigrid Methods

This paper is to give an overview of AMG methods for solving large scale systems of equations such as those from the discretization of partial differential equations. AMG is often understood as the acronym of “Algebraic Multi-Grid”, but it can also be understood as “Abstract Muti-Grid”. Indeed, as it demonstrates in this paper, how and why an algebraic multigrid method can be better understood ...

متن کامل

Aggregation-Based Algebraic Multigrid for Convection-Diffusion Equations

We consider the iterative solution of large sparse linear systems arising from the upwind finite difference discretization of convection-diffusion equations. The system matrix is then an M-matrix with nonnegative row sum, and, further, when the convective flow has zero divergence, the column sum is also nonnegative, possibly up to a small correction term. We investigate aggregationbased algebra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Miskolc Mathematical Notes

سال: 2013

ISSN: 1787-2405,1787-2413

DOI: 10.18514/mmn.2013.344